3.1 \(\int (a+b \text {sech}^2(c+d x)) \sinh ^4(c+d x) \, dx\)

Optimal. Leaf size=70 \[ -\frac {(5 a-4 b) \sinh (c+d x) \cosh (c+d x)}{8 d}+\frac {3}{8} x (a-4 b)+\frac {a \sinh (c+d x) \cosh ^3(c+d x)}{4 d}+\frac {b \tanh (c+d x)}{d} \]

[Out]

3/8*(a-4*b)*x-1/8*(5*a-4*b)*cosh(d*x+c)*sinh(d*x+c)/d+1/4*a*cosh(d*x+c)^3*sinh(d*x+c)/d+b*tanh(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {4132, 455, 1157, 388, 206} \[ -\frac {(5 a-4 b) \sinh (c+d x) \cosh (c+d x)}{8 d}+\frac {3}{8} x (a-4 b)+\frac {a \sinh (c+d x) \cosh ^3(c+d x)}{4 d}+\frac {b \tanh (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sech[c + d*x]^2)*Sinh[c + d*x]^4,x]

[Out]

(3*(a - 4*b)*x)/8 - ((5*a - 4*b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*d) + (a*Cosh[c + d*x]^3*Sinh[c + d*x])/(4*d)
+ (b*Tanh[c + d*x])/d

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 455

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[((-a)^(m/2 - 1)*(b*c - a*d)*
x*(a + b*x^2)^(p + 1))/(2*b^(m/2 + 1)*(p + 1)), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 1157

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, -Simp[(R*x*(d + e*x^2)^(q + 1))/(2*d*(q + 1)), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*
ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && N
eQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps

\begin {align*} \int \left (a+b \text {sech}^2(c+d x)\right ) \sinh ^4(c+d x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (a+b-b x^2\right )}{\left (1-x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {a \cosh ^3(c+d x) \sinh (c+d x)}{4 d}+\frac {\operatorname {Subst}\left (\int \frac {-a-4 a x^2+4 b x^4}{\left (1-x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{4 d}\\ &=-\frac {(5 a-4 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac {a \cosh ^3(c+d x) \sinh (c+d x)}{4 d}-\frac {\operatorname {Subst}\left (\int \frac {-3 a+4 b+8 b x^2}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 d}\\ &=-\frac {(5 a-4 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac {a \cosh ^3(c+d x) \sinh (c+d x)}{4 d}+\frac {b \tanh (c+d x)}{d}+\frac {(3 (a-4 b)) \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 d}\\ &=\frac {3}{8} (a-4 b) x-\frac {(5 a-4 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac {a \cosh ^3(c+d x) \sinh (c+d x)}{4 d}+\frac {b \tanh (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 54, normalized size = 0.77 \[ \frac {12 (a-4 b) (c+d x)-8 (a-b) \sinh (2 (c+d x))+a \sinh (4 (c+d x))+32 b \tanh (c+d x)}{32 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sech[c + d*x]^2)*Sinh[c + d*x]^4,x]

[Out]

(12*(a - 4*b)*(c + d*x) - 8*(a - b)*Sinh[2*(c + d*x)] + a*Sinh[4*(c + d*x)] + 32*b*Tanh[c + d*x])/(32*d)

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 114, normalized size = 1.63 \[ \frac {a \sinh \left (d x + c\right )^{5} + {\left (10 \, a \cosh \left (d x + c\right )^{2} - 7 \, a + 8 \, b\right )} \sinh \left (d x + c\right )^{3} + 8 \, {\left (3 \, {\left (a - 4 \, b\right )} d x - 8 \, b\right )} \cosh \left (d x + c\right ) + {\left (5 \, a \cosh \left (d x + c\right )^{4} - 3 \, {\left (7 \, a - 8 \, b\right )} \cosh \left (d x + c\right )^{2} - 8 \, a + 72 \, b\right )} \sinh \left (d x + c\right )}{64 \, d \cosh \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)*sinh(d*x+c)^4,x, algorithm="fricas")

[Out]

1/64*(a*sinh(d*x + c)^5 + (10*a*cosh(d*x + c)^2 - 7*a + 8*b)*sinh(d*x + c)^3 + 8*(3*(a - 4*b)*d*x - 8*b)*cosh(
d*x + c) + (5*a*cosh(d*x + c)^4 - 3*(7*a - 8*b)*cosh(d*x + c)^2 - 8*a + 72*b)*sinh(d*x + c))/(d*cosh(d*x + c))

________________________________________________________________________________________

giac [B]  time = 1.10, size = 130, normalized size = 1.86 \[ \frac {24 \, {\left (d x + c\right )} {\left (a - 4 \, b\right )} + a e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 8 \, b e^{\left (2 \, d x + 2 \, c\right )} - {\left (18 \, a e^{\left (4 \, d x + 4 \, c\right )} - 72 \, b e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 8 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )} e^{\left (-4 \, d x - 4 \, c\right )} - \frac {128 \, b}{e^{\left (2 \, d x + 2 \, c\right )} + 1}}{64 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)*sinh(d*x+c)^4,x, algorithm="giac")

[Out]

1/64*(24*(d*x + c)*(a - 4*b) + a*e^(4*d*x + 4*c) - 8*a*e^(2*d*x + 2*c) + 8*b*e^(2*d*x + 2*c) - (18*a*e^(4*d*x
+ 4*c) - 72*b*e^(4*d*x + 4*c) - 8*a*e^(2*d*x + 2*c) + 8*b*e^(2*d*x + 2*c) + a)*e^(-4*d*x - 4*c) - 128*b/(e^(2*
d*x + 2*c) + 1))/d

________________________________________________________________________________________

maple [A]  time = 0.33, size = 78, normalized size = 1.11 \[ \frac {a \left (\left (\frac {\left (\sinh ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sinh \left (d x +c \right )}{8}\right ) \cosh \left (d x +c \right )+\frac {3 d x}{8}+\frac {3 c}{8}\right )+b \left (\frac {\sinh ^{3}\left (d x +c \right )}{2 \cosh \left (d x +c \right )}-\frac {3 d x}{2}-\frac {3 c}{2}+\frac {3 \tanh \left (d x +c \right )}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sech(d*x+c)^2)*sinh(d*x+c)^4,x)

[Out]

1/d*(a*((1/4*sinh(d*x+c)^3-3/8*sinh(d*x+c))*cosh(d*x+c)+3/8*d*x+3/8*c)+b*(1/2*sinh(d*x+c)^3/cosh(d*x+c)-3/2*d*
x-3/2*c+3/2*tanh(d*x+c)))

________________________________________________________________________________________

maxima [B]  time = 0.31, size = 129, normalized size = 1.84 \[ \frac {1}{64} \, a {\left (24 \, x + \frac {e^{\left (4 \, d x + 4 \, c\right )}}{d} - \frac {8 \, e^{\left (2 \, d x + 2 \, c\right )}}{d} + \frac {8 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d} - \frac {e^{\left (-4 \, d x - 4 \, c\right )}}{d}\right )} - \frac {1}{8} \, b {\left (\frac {12 \, {\left (d x + c\right )}}{d} + \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{d} - \frac {17 \, e^{\left (-2 \, d x - 2 \, c\right )} + 1}{d {\left (e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )}\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)*sinh(d*x+c)^4,x, algorithm="maxima")

[Out]

1/64*a*(24*x + e^(4*d*x + 4*c)/d - 8*e^(2*d*x + 2*c)/d + 8*e^(-2*d*x - 2*c)/d - e^(-4*d*x - 4*c)/d) - 1/8*b*(1
2*(d*x + c)/d + e^(-2*d*x - 2*c)/d - (17*e^(-2*d*x - 2*c) + 1)/(d*(e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c))))

________________________________________________________________________________________

mupad [B]  time = 1.61, size = 73, normalized size = 1.04 \[ \frac {3\,a\,x}{8}-\frac {3\,b\,x}{2}-\frac {a\,\mathrm {sinh}\left (2\,c+2\,d\,x\right )}{4\,d}+\frac {a\,\mathrm {sinh}\left (4\,c+4\,d\,x\right )}{32\,d}+\frac {b\,\mathrm {sinh}\left (2\,c+2\,d\,x\right )}{4\,d}+\frac {b\,\mathrm {sinh}\left (c+d\,x\right )}{d\,\mathrm {cosh}\left (c+d\,x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)^4*(a + b/cosh(c + d*x)^2),x)

[Out]

(3*a*x)/8 - (3*b*x)/2 - (a*sinh(2*c + 2*d*x))/(4*d) + (a*sinh(4*c + 4*d*x))/(32*d) + (b*sinh(2*c + 2*d*x))/(4*
d) + (b*sinh(c + d*x))/(d*cosh(c + d*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right ) \sinh ^{4}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)**2)*sinh(d*x+c)**4,x)

[Out]

Integral((a + b*sech(c + d*x)**2)*sinh(c + d*x)**4, x)

________________________________________________________________________________________